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Abstract--Within the framework of the assumptions that the processes of condensation or evaporation 
in subcooled or superheated liquids are controlled by convective heat transfer, and that the flow past a 
spherical bubble of a changeable radius is both potential and axisymmetric, the heat exchange of a vapor 
bubble at high Nusselt numbers is considered. Asymptotic expressions for the Nusselt number, taking into 
account the unsteady character of the thin thermal boundary layer due to the changeability of the bubble 
radius and the relative velocity, are obtained. Calculations and comparisons between the present theory 
and previous numerical and experimental data are performed. 
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1. INTRODUCTION 

The dynamics of a vapor bubble in subcooled or superheated liquids have been investigated by 
various authors since the pioneering work of Rayleigh (1917). The Rayleigh regime of bubble 
collapse controlled by the inertia of the liquid is not typical and often the collapse process is limited 
by the ability of the liquid to conduct the heat of condensation (the so-called thermal regime). The 
criterion, showing which of these two mechanisms is limiting the process at moderate or high 'Jacob 
numbers and in the absence of translatory motion, was introduced by Florschuetz & Chao (1965). 

Most theoretical works deal with the thermal regime of bubble dynamics without translatory 
motion (for example, Plesset & Zwick 1952; Plesset & Zwick 1954; Scriven 1959; Zuber 1961; 
Florschuetz & Chao 1965; Prosperetti & Plesset 1978; Nigmatulin et al. 1981; Korabelnikov et al. 

1981; Zuong Ngoc Hai & Khabeev 1983; Nakoryakov et al. 1983; Nigmatulin 1987; Okhotsimskii 
1988; Gumerov 1989; Nigmatulin et al. 1991; etc.). As a rule, translatory motion caused by 
gravitation and acceleration of the flow takes place. The flow past the bubble can heavily influence 
the thermal regime of bubble collapse due to the convection and consequent increase of the 
condensation rate. 

An expression for the total mass flux on a spherical gas bubble in steady motion with a thin 
diffusion boundary layer can be found in the monograph of Levich (1959). This formula is also 
applicable to calculate the quasi-steady heat flux on vapor bubbles, because of the analogy between 
the heat and mass diffusion and identical mathematical models. 

Experimental and numerical studies of vapor bubble collapse with translatory motion were 
carried out by Wittke & Chao (1967). There, the sphericity of the bubble, constant velocity of the 
flow far from the bubble and axisymmetric temperature and velocity profiles are assumed in the 
mathematical model; results of the calculations are consistent with experiments. The same 
assumptions were later used by Sagitov & Khabeev (1989) in their numerical simulations. However, 
they also took into account the inertia of the liquid at radial motion and the vapor elasticity that 
lead to possible radial oscillations. Further development of the model, including the conservation 
of momentum equation for spherical bubbles, and corresponding simulations were performed in 
the work of Zolovkin et al. (1994). 

In the paper of Florschuetz et al. (1969), extensive experimental data are presented for growth 

tPresent address: 177 Winthrop Rd #3, Brookline, MA 02146, U.S.A. 

259 



260 N.A. GUMEROV 

rates of vapor bubbles in various superheated liquids under normal and zero gravity conditions. 
The authors found that the initial stage of bubble growth can be described properly by using the 
Scriven exact self-similar solution (Scriven 1959). Some influence of translatory motion was 
observed in the next stages of bubble growth under normal gravitation. A review of previous works 
can also be found in this article. 

The work of Ruckenstein & Davis (1971) is remarkable because an exact solution of the 
convective heat conduction equation describing the heat transfer in the unsteady thin boundary 
layer near a spherical bubble is obtained. Comparisons with known experimental data on bubble 
growth with translatory motion support analytical solutions. Unfortunately, the expression found 
for the total heat flux to the bubble is unwieldy and can hardly be used in complex models of 
multiphase flows with vapor bubbles. 

A number of researchers have used some model simplifications and experimental data to obtain 
simple formulae describing bubble dynamics with translatory motion (Moalem & Sideman 
1973; Voloshko et al. 1973; Akiyama 1973; Dimic 1977; Nordmann & Mayinger 1981; Chen 
1985; Mayinger et al. 1991). The last three works consist of reviews in the field and comparisons 
of their experimental data and approximations with calculations using formulae of previous 
authors. 

Reviews of analytical works dealing with heat and mass transfer near rigid particles, droplets 
and bubbles with translatory motion can also be found in monographs by Gupalo et al. (1985) 
and Dilman & Polyanin (1988). The quasi-stationary dependencies of Nusselt number on the flow 
parameters (Peclet, Reynolds and Weber numbers) were studied there. Also, effects such as 
chemical reactions and droplet and bubble deformations were taken into account in the cited 
works. 

The idea of the present work came after the ICHMT seminar held in Dubrovnik, Yugoslavia 
in 1990, where Professor F. Mayinger presented some of the results of his and his co-workers' 
investigations on bubble collapse in subcooled liquids. These results demonstrate a substantial 
quantitative disagreement between existing simplified formulae for bubble dynamics and 
experiments. 

The present work has two goals. First, to conduct an analytical study of the non-stationary heat 
and mass exchange between the moving bubble and surrounding liquid and to classify the possible 
regimes of bubble growth or collapse. Second, to obtain sufficiently simple formulae describing the 
heat and mass transfer near vapor bubbles that are both consistent with experiments and can be 
used for various descriptions of dynamic processes in multiphase flows such as cavitation, boiling, 
waves in vapor-liquid mixtures, etc. Selected results of the present work were presented at the 
Euromech Colloquium Flows with Phase Transitions held in G6ttingen, Germany in 1995. 

2. BASIC ASSUMPTIONS AND EQUATIONS 

Usually we can accept the following assumptions (see, for example, Wittke & Chao 1967): 

(1) the vapor bubble is a sphere of radius a(t), which moves with the translational velocity U(t) 
in an incompressible liquid having a constant temperature To, pressure p0 and zero velocity at 
infinity; 

(2) the profile of the velocities in the liquid (VL) is axisymmetric and potential (VL = Vr~); 
(3) the pressure in the bubble is constant p0; 
(4) the local thermodynamic equilibrium between the liquid and the vapor holds and, thus, the 

temperature of the interface is equal to the saturation temperature Ts(p0); 
(5) the thickness of the thermal boundary layer is small if compared with the bubble size; 
(6) the vapor is a perfect gas and its density pG is much less than the density of the liquid pL; 
(7) both the thermal (2L) and temperature (XL) conductivities of the liquid are constant. 

Thus, the dynamics of the bubble mass rn~ can be described by the equations 

4 I dmc qL[sn dS, qL = -- ~.L[TrTL, m~= ~ xa3pc [1] 
dt 
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where TL and qL are the temperature of the liquid and the heat flux, n is the outer normal vector 
to the sphere surface and / is the latent heat of evaporation. 

To find the temperature distribution we must solve the following problem 

-~- VLVr TL = ~LArrTL, TLlr=a(t) "~" Ts, TL I . . . . .  To 

VL = Vr(~L, ~bL= r dt U r + ~rSr 2 cos~9, drr= VrVr. [2] 

Here r and ~ are the spherical polar coordinates connected with the center of the bubble. 
If  U(t) is a known function and initial conditions are determined, then the system of [1] and 

[2] is closed, and the bubble radius dynamics a(t) can be found. 

3. DIMENSIONLESS PARAMETERS AND CHARACTERISTIC TIMES 

Let us define t. as the characteristic time of bubble collapse in a subcooled liquid. This 
time depends on the initial radius a0, initial or characteristic velocity U0 and the thermophysical 
properties of the phases. We can introduce the following dimensionless parameters and 
variables: 

t ' =  t r T L -  To a '=  a U'= U ,  2aU ~" ~u 
t . '  q = a ( t ) '  U = T s s Z T o ,  --ao' Uoo Pe= ~CL , N u = - -  Jo ~ l r / = l s i n 0 d 0  

J a -  pLCL(Ts- To) Pe0= 2a0U0 S t -  2a0 (XLt.) ~/2 Ja 
p~l ' tel ' Uot.' e-- ao , 6 -  PeU- [3] 

where CL is the specific heat of the liquid; and Pe, Ja, Nu and St are the Peclet, Jacob, Nusselt and 
Strouhal numbers, respectively. 

Note, that the Jacob number introduced by [3] is negative if we have bui~ble growth (Ja < 0) 
and positive in the case of bubble collapse (Ja > 0). Below we consider the case of bubble collapse 
in subcooled liquids and in estimations of magnitudes we assume that Ja > 0. The estimations also 
hold for Ja < 0, but in this case we should replace Ja by ]Ja I. 

Using variables [3] we can represent [1] and [2] in the form: 

d e / '  
2a' dt '  = - e2JaNu [4] 

u , , = , = l ,  u,, . . . .  0, 4 ' = - ( q +  +)cos~9.  [5] 

The following standard initial conditions can be used: 

ul,,=o--0, al,,=0 = 1 (U'[,,=0 = 1). [61 

Because the left hand part of [4] is in the order of unity by the definition of t., we can define 
the characteristic value of the Nusselt number Nu. by the following relation: 

eZJaNu. = 1. [7] 
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The number Nu. can also be found from the solution to problem [5]-[6] and, thus, it is the 
function of  two parameters E and St. Comparison of the non-stationary, convective (due to 
translatory motion) and conductive terms in [5] shows that 

E ~, St>>l 
Nu.(E,St) = ~ e -t, S t - l "  

(~-~St -~'2, St<< 1 
[8] 

Note that any dimensionless constant number is a function of  two basic numbers Ja and Pe0. 
So, if we have a moderate thickness of the thermal boundary layer (Nu. = 1), then we find from 
[7] and [3] that 

Nu. = 1: E=Ja -1'2, St=4JaPe6 -t, t.=a~(~cLJa) -~. [9] 

Evaluations [8] give the criterion when such values of  the Nusselt number can be realized--both 
(Ja and Pe0) numbers cannot high. Consequently, the regime with a thin thermal boundary layer 
(Nu.>> 1) occurs when at least one of  these numbers is high. Thus, in the case St>>l we have from 
[3], [7] and [8]: 

Nu. = Ja>> !: E=ja-l<< 1, St=4Ja2pe6 -~ = 4S2>> 1, t,=a~(tcLJa2) -l. [10] 

In the second limiting case St<< 1 we have 

Nu. = Pe6;2>> 1: E =ja-l/2Pe0 -I/4, St=4JaPe6 -1/2 = 4S << 1, t .=a](KLJaPe~:2)  - ' .  [11] 

Moderate values of the Strouhal number correspond to moderate values of  the parameter S. Note 
that in this case the requirement Nu.>> 1 denotes E << 1. 

Evaluations [10] and [11] show that the increasing Peclet and Jacob numbers cause a decreasing 
characteristic collapse time t.. At very high Ja and Pe0 it can be of  the same order as the 
characteristic time of  the empty sphere collapse t~ in the classical Rayleigh problem: 

t, = ao(pL/po) '/3. [ 12] 

If t. < t~, then the vapor condenses so fast that the bubble radius cannot substantially change 
due to the liquid inertia. Thus, the pressure in the bubble drops, practically until zero, and the 
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Figure 1. Areas in the space of  parameters (Pe0, Ja) with different characteristic times of  the vapor bubble 
growth and collapse. Area 1 corresponds to the inertial regime of collapse with the characteristic time 
[12]. The thermal regime is realized for parameters from areas 2, 3 and 4. The characteristic times of  the 
bubble growth and collapse in these areas can be determined by [10] for area 2, [11] for 3 and [9] for 4. 
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Rayleigh inertial regime of the bubble collapse takes place. The thermal regime can only take place 
if t. >> tj. Consequently, the necessary conditions for this regime are the following: 

Ja>> 1: /~ja2<< 1 (~-~-KLaOI(pL/pO) I/2) [13] 

Pe0>> 1: flJaPe~/2<< 1. [14] 

In figure 1 the space of the parameters (Pe0, Ja) is divided into four areas corresponding to 
various characteristic times of the collapse. The boundaries of areas 1-2 and 1-3 are determined 
by [13] and [14] and depend on the values of the parameter ft. For the parameters from each area 
some simplifications of the general problem can be made. The present work deals with the 
parameters from areas 2 and 3. Note that a thin thermal boundary layer can be realized at the 
initial stage of the collapse. 

4. ASYMPTOTIC EXPANSIONS AND NUSSELT NUMBER 

The asymptotic analysis below is based on the assumption that Nu.>> 1. This situation can be 
realized in a wide range of Strouhal numbers. So, we consider different asymptotic cases to provide 
full analysis of the regime with a thin thermal boundary layer. 

4.1. Moderate Strouhal numbers 

At moderate Strouhal numbers we have the small parameter E << 1. Let us introduce the boundary 
layer variable ~ and rewrite problem [5]-[6] in the zero-order approximation 

8u da' Ou 6U'a" I Ou -½sin8 c~u] d2u (a') 2 ~-; -- 3a' ~ ( ~-~ St ~cos8 ~-~ ~ - c3~2 

u]¢=0 = 1, ul~=~ = 0, ul,,.0 = 0 ( ~ = E - l ( q -  1)). [151 

Note that the asymptotic of the boundary layer is formally justified at any angle except small 
vicinities of the critical points 0~E 2 and rr-8~C. Nevertheless, in zero-order approximation the 
contribution of these vicinities to the integral Nusselt number [3] is small (see Levich 1959; Gupalo 
et al. 1985). 

If  the following relationships hold 

= ~f(~,t'), v=g(8, t ' ) ,  z=h(&t ' ) ,  v(~,v,z)=u(~,O,t') [16] 

, dg 3U" gg Oh 3U' • .Oh 
f =  (a')3sin20, a ~ + ~ sin8 ~ = 0, a '  ~7 + ~ s m o ~  = (a')Ssin48 [17] 

then the spatial-temporal transform ((,~9,t')--}(~,v,z) allows us to reduce problem [15] to the 
standard heat conduction problem: 

0v c~-'v 0]¢=0 = 1, ol¢=~ = 0. [18] 0~ - ~ - ~ '  

For the initial condition t0 = h(8 ,0)= 0 we have v]~=0 = 0 and the self-similar solution of 
problem [18] takes place: v = erfc(½~-"2). So we can find the Nusselt number: 

1 fo" 0o [a'(t')]3 fo~ sin38d8 
Nu = E E~ 1/2 [h(8,t')] l/'- -- -- f~-~ ]¢ = 0 sinSd8 -- . [19] 

The integral representation for h(8,t ') can be found from the last equation [17]. In the variables 

fo" U'(t") 
(a') ~ 

s ( t ' ) = 2  ~ d t " ,  ~,(8)=~log[tan(½~9)], b(s)= c(),) = sin4t9 [20] 
2 U ' '  a U )  
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this equation can be rewritten in the form 

Oh 1 dh 
c~-~ + St 07 - b ( s ) c ( ? ) .  [21] 

The general solution of this first-order equation is 

fo h = b(s')c(7 - St- '(s - s')) ds'  + H(7 - St ~s). [22] 

An arbitrary function H is determined from the initial condition z0 = h(0,0) = 0 and, as a result, 
H - 0. Using [20] we can rewrite [22] in the form 

3 U'(t"') 4 
h(,9,t') = f0' {a'(t")sechIl°g(tan-02) - ~  f '  a ' ( t " ' ) d t " ' ] } d t " .  [23] 

Thus, the Nusselt number given by [19] and [23] depends on the bubble motion pre-history. Note 
that the case of  moderate Strouhal numbers was considered by Ruckenstein & Davis (1971), who 
obtained similar expressions, but in a slightly different form. Expressions such as [19] and [23] are 
too unwieldy for practical use, and some simplifications are very desired much. These 
simplifications can be obtained immediately from [23] by asymptotic expansions at high and low 
Strouhal numbers. However, it is more convenient to consider [21]. 

4.2. High Strouhal numbers 

To find the asymptotic expansion at St>> 1 we can represent the function h in the form 

h = h0(s,7) + St-the(s,7) + St-2h2(s,?) + . . . .  [24] 

Substituting [24] into [21] and collecting terms of the same order we can obtain 

~ho ~hn+ 1 ~hn 
ds - b ( s ) c ( 7 ) ,  ~s - ~7 ' h,(0,7)=0, n=0,1,2 . . . . .  [25] 

Consequently, after integration we have 

h ° = ~ ,  - c, ct,(s)= ~,_~(s ' )ds ' ,  c t_~=b,  n=0,1,2 . . . . .  [26] 

Using [20], [24] and [26] we find the first three terms of expansion h: 

h = sin4~9[~0 - 6~St-~cos0 + 9~2St 2(5cos20 - 1) + . . . ] .  [27] 

From [19] and [27] we can find the expression for the Nusselt number: 

Nu = 2E-'(rc~0)-'/2[a'(t')]s{ 1 + 3(a0St)-2(4~0~2 + 3~) + O(St-4)}, [28] 

According to [20] and [26] we have representations for c~,: 

" d~,,+l U' 
c~0= [a'(t")] 'dt",  dt -2 - -~° , a ,  ~,(0)=0, n=0,1,2,  . . . .  [29] 

The principal term of asymptotic [28], [29] was found by Plesset & Zwick (1954), who solved 
the problem in zero-order of  approximation without translatory motion at Ja >> 1. The second term, 
expressing the effect of  translatory motion is, presumably, a new result. 

4.3. Low Strouhal numbers and moderate times 

At St<< 1 the direct asymptotic expansion for h can be written in the form 

h = Sth~(s,7) + St2h2(s,7) + . . . .  [30] 
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Using [21] and [30] we can obtain the following sequence of  equations 

Oh, Oh.+~ _ Oh. h . ( s . - o o )  = 0, n =  1,2, [31] 
07 - b(s)c(7)' 07 Os . . . . .  

The last boundary condition can be justified with the help of  general integral representation [22]. 
Here we can substitute the integration variable with the relation s' = s + St(7-7') and assume that 
the Strouhal number tends to zero. Thus, solving the first two equations in [31] we have the 
following two-term asymptotic expansion of h 

h = Stb(s)[~,,(O) - Stbz(s)d/2(8) + ...] 

$,(,9) = I ;' c(7')d7' 22 1 db = ~(~ -- cos0 + ]cos3oq), b2(s)= b ds 
./- a0 

"" 8 2,9 ¼sin2B). 
q/2(,9) : f i fo  f ' _ c ( 7 " ) d y " d 7 " = - ~ ( l o g ( c o s  ~ ) +  [321 

Two first terms of the Nusselt number asymptotic can be found from [19] and [32]: 

Nu = [a'(t')]~ [I~ + ½12Stb2(s(t')) + .] E[nStb(s( t,) )]l/2 "" 

I, = 2x/~, I2=4x/~[2x/~-  1 + 21og(x/~-  1)]. 

Using [3], [20] and [32], [33] can be rewritten in the form 

[331 

d ((a')S'~ kN=~12x/~ ,~, 0.41. Nu = ~,----5 Pe~/2(a'U')~n[ 1 + ku6 -d-i 7 \ U" J + O(62)]' [34] 

The principal term of  this asymptotic depends only on the current Peclet number: 

Nu = 2re- l/2pel/2. [35] 

This formula is a well-known result for the quasi-stationary bubble Nusselt number at high Peclet 
and Reynolds numbers (Levich 1959). The second term of asymptotic [34] takes into account the 
effect of the non-stationarity of  the thermal boundary layer (a new result). For example, if the 
velocity of the bubble is constant, then the increasing bubble radius (da'/dt" > 0) leads to the 
decreasing thickness of  the boundary layer due to its 'compression' by the moving boundary; in 
the case of bubble collapse (da'/dt" < 0), increasing boundary layer occurs and the Nusselt number 
becomes less than its quasi-stationary value. 

Note that the first two terms of the stationary Nusselt number asymptotic at high Reynolds 
numbers have the following form (see Gupalo et al. 1985) 

Nu = 2n-'/2Pel/2[l - kRRe-;/2], kR=-](3X//3 -- 2), Re = 2aU/VL [36] 

where VL is the viscosity of the liquid. Comparison of [34] and [36] shows that the second term in 
asymptotic [34] is more essential than the second term in [36] at 

Ja>>Pr 1/2, P r=  VL/XL. [37] 

4.4. Low Strouhal numbers and small times 
The direct expansion [30] is valid only at times t'>> St. At small times t'<< 1 we introduce a new 

variable a = s/St. The integral representation of h [22] can be rewritten in the form 

h = St b(tr'St)c(7 - a + tr') dtr'. [38] 
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According to [6] and [20] we have b (a 'S t )  = b(0) + O(St), b(0) = ½. F r o m  this and [38] we find 
that  the principal  te rm o f  the asympto t ic  in the considered case takes the fo rm 

h = ½St c ( z )  dz, z = ~r' - ~r + ,/. [391 
cr 

Using [20] we can calculate integral [39] analytically and obta in  the following expression 

h = lStz(1 -/~2)2(1 + #~)-313(1 + #~) - z-'(1 - /a2)]  

# = - tanh(37) = cos#,  z = t a n h ( 3 a )  ~ t anh(3S t - ' t ' ) .  [40] 

Fo r  the Nussel t  numbe r  [19], consequently,  we .have (a '  = 1 + O(St)) 

f l  2~((r) pe~,2, Z(z)=3 (1 + Uz) 3'2 d# [411 
N u  = (rcz),,2 -~ [3(1 + /~z)  --- r'--~ 7/~2)1,.,2 • 

At  t ' - I  we have z ~ 1 (see [40]). F r o m  [41] it can be found that  X(0) = ½xf3 ~ 0.86, Z(1) = 1 and 
[41] matches  with [35] at modera t e  times. The  limiting values of  the m o n o t o n o u s  funct ion Z(z) are 
close to each other  and  somet imes  for  appl icat ions we can consider that  ~( - const.  = 1. A more  
accurate  app rox ima t ion  of  this function: 

g(z) ,~ ½x/~[1 + (3x/~ - 1)z 2] [42] 

is convenient  bo th  for  analytical  and practical  usage. The  relative error  o f  [42] is not  greater  than 
2% a t 0 _ < z <  1. 

5. BUBBLE C O L L A P S E  AT LOW S T R O U H A L  N U M B E R S  

It was observed in the exper imental  studies o f  the collapse of  vapo r  bubbles  rising under  gravity 
forces (Wittke & Chao  1967; Mayinger  e t  a l .  1991; see the next section) that  the velocity of  the 
bubble  is practical ly constant .  I f  we accept  this empirical  fact and consider that  U'  --- 1, then [4] 
and the expression for  the Nussel t  n u m b e r  obta ined  above  form a closed system of  equations.  When  
[34] is justified, we can obta in  the following equat ion  describing the bubble  dynamics  

o0a [ = - -  n - i " 2 ( a ' )  '/2 1 + 5 k u 6  . [43] 

After  integrat ing this equat ion  with the initial condi t ion a ' (0)  = 1 we have 

t '  = -]r~l/2[1 - -  ( a ' )  3/2] + 5kN6(1 -- a ' ) .  [44] 

The principal  term of  this asympto t ic  

t '  = -z31tl':[1 - (a ' )  3/2] [45] 

can be found directly using the quas i -s ta t ionary  relat ionship [35] (see also Moa lem & Sideman 
1973). 

As found in the previous section, [43] is not  uni formly valid in the case of  initial t empera ture  
drop.  The  uni formly  valid zero-order  app rox ima t ion  at St < 1 can be obta ined  f rom the equat ion 
using [41]: 

, da '  a ~-7 = - 0rz)-l/2Z(z)(a')l/2, a ' ( 0 ) =  1. [46] 

Tak ing  into account  [42] we can integrate this equat ion  and find 

1 - -  ( a ' )  3/2 m .  6 F ( ~ ) ,  z = tanh(36 - it ') 

F(T) = n- la[ (2x/~  -- 4)T I/2 + log(1 + ~/2) _ log(l  -- ~v_,) + 2arctan(z~,z)]. [47] 
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The second term of the Nusselt number asymptotic [34] can be taken into account with the help 
of  the asymptotic matching procedure for [46] and [43]. A uniformly valid combined asymptotic 
expansion in this case can be written in the form 

1 - -  ( a ' )  3/z + ~ r r - ' / Z k u 6 ( 1  - a ' )  = 6 F ( r ) .  [48] 

Note, that some authors also derived their formulae for bubble dynamics with translatory motion 
using the assumption that U' = (a ' ) " ,  where the value of  the exponent n depends on the regime 
of  bubble rising in the presence of  gravitation (see, for example, Moalem & Sideman 1973; Dimic 
1977). It is not difficult to generalize [43]-[48] for this case by substituting U' = (a')" in [34]. 

6. COMPARISONS OF THE PRESENT RESULTS WITH PREVIOUS DATA 

The work of  Wittke & Chao (1967) is good for testing the present asymptotic results because 
some of  the numerical studies in that work were carried out within the framework of  the same 
equations describing the process. A constant velocity (U'  = 1) was assumed in the simulations. Also 
in the work of  Wittke & Chao, all numerical results were presented using dimensionless time, 
"rrf = ~ J a 2 x L a C 2 t ,  the values of  which are in the order of  unity at high Strouhal numbers, but at St<< 1 
we have z,  = 4&, and the characteristic values of  rH are small ( t '~ l ,  6 << 1). 

Good  agreement between numerical (Wittke & Chao) and analytical results [45] on the bubble 
radius dynamics is shown in figure 2. Because in this case (Ja = 1, Pc0-103) the values of  the 
parameter  6 are very small, we have the quasi-stationary regime of  the heat transfer at all times 
of  the bubble's life. Thus, being rebuilt in the new time scale, calculations for different Peclet 
numbers coincide with each other and with zero-order approximation [45]. 

The influence of  the non-stationary nature of  the thermal boundary layer on the bubble dynamics 
is seen in figure 3 (Ja = 10). The influence of  the initial stage of  the boundary layer development 
manifests itself in the S-shape of  the condensation curves (for the curves of  [44] and [45] we have 
d 2 a / d t  2 < 0). Both curves calculated by [47] and [48] qualitatively agree with the curve obtained 
numerically. At a decreasing Peclet number (increasing 3) the simulated curve is closer to the curve 
corresponding to [48] than to the curve corresponding to [47]. 

Also in the work of  Wittke & Chao (1967), their own experimental data were compared with 
the simulations and a satisfactory agreement was shown. However, a more complex situation was 
realized in the experiments and simulations than in the case considered in the present work, because 

------~. Ja=1 ~P¢=1500, St=O.l 
0.8 ~ ~ .  -o- Pc=3000, St=0.073 

~ .  -o- Pc=4500, St=O.06 
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0.2 

0 i i J i i '~ 

0 0.2 0.4 0.6 0.8 1 1.2 

t' 
Figure 2. The dependence of the dimensionless bubble radius a' on dimensionless time t" at Ja = 1 and 
different Peclet numbers. The solid curves correspond to the numerical solutions of Wittke & Chao (1967). 
The dotted curve corresponds to the asymptotic formula [45] for the quasi-stationary heat transfer. The 

Strouhal numbers indicated on the chart are small in each case• 
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there were bubbles consisting of  vapor and an inert gas, which is why the present results are not 
compared with these experiments. Nevertheless, the initial stage of the vapor-gas  bubbles' 
dynamics in the case 6 << 1 can be satisfactorily described by [47] and [48]. 

The experimental data on pure vapor  bubble collapse in subcooled liquids can be found in the 
works of  Mayinger and collaborators (Nordmann & Mayinger 1981; Chen 1985; Mayinger et  al.  
1991). In contrast to the Wittke & Chao experiments, where condensation begins due to the 
instantaneous pressure drop, here vapor  was injected into subcooled liquid through the nozzle. 
Vapor bubbles initially grew on the nozzle and then detached from it and collapsed in the bulk 
of  the liquid. These authors also noticed, as did Wittke & Chao, that the rising velocity of the 
collapsing bubbles was close to constant. 

The times of  growth of  the bubbles on the nozzle were of  the same order of  magnitude as the 
times of collapse. As well as the range of  characteristic Jacob and Peclet numbers in the experiments 
which corresponded to St<< 1, the quasi-stationary thermal boundary layer was built up on the 
bubbles practically at the moment  of  detachment. This conclusion can be confirmed by figure 4, 
where the data on the direct measurements of  the Nusselt number and the graph of the 
quasi-stationary relationship [35] are plotted. The empirical approximation proposed by the 
experimenters, Nu = 0.6Re°06pr °5 (Re0=Pe0/Pr), is also shown. 

Thus, we can expect that bubble dynamics in the experiments of  Mayinger and co-workers can 
be described by [44] and [45] if Pe0>> 1 and 6 << 1. In figure 5 some comparisons of  asymptotic results 
([44] and [45]) with the experiments (Chen 1985) are given. Also the curves corresponding to 
the empirical correlation (Chen 1985), a ' =  (1-0.56Re°Tpr°SJaFo)°-9, Fo = tCLt(2ao) -2, which was 
obtained as a result of  many his own experiments with various substances at Ja = 5 . . . . .  80, are 
plotted in figure 5. 

These comparisons show that both [44] and [45] adequately describe the experimental data in 
the initial stages. However, because the radius of  the bubble decreases, the influence of the 
non-stationarity of  the thermal boundary layer increases. This peculiarity is clearly seen at 
sufficiently high Jacob numbers (increasing Ja leads to an increase of  6) and [44] much better 
describes the experiments than [45]. 

Also, to show the influence of  parameter  6 on the bubble dynamics, we have represented the 
original experimental data in the characteristic time scale t ' - l .  Now it is clearly seen, that the value 
of  this parameter  effects bubble collapse. 

~ , ~ o . .  ~..,o Ja = 1 O, Pe = 1500, St= 1 -. o- Quasi-Steady 
- " o.,.~. --o- Zero Order 

O.8 
• .~_ - ~ - . . ~  " " ~ . ~ " ' ~  ~'"o.. o. - - ~  First Order 

0.6 '~-<>. 
a r 
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Figure 3. The dependence of the dimensionless bubble radius a' on dimensionless time t' at Ja = 10 and 
Pe0 = 1500 (St ~ 1.03). The solid curves correspond to the asymptotic formulae [47] and [48] (zero and 
first orders of approximation, respectively) and the numerical simulations of Wittke & Chao (1967). The 
dotted curve corresponds to [45], when the non-uniformity of the quasi-steady solution at the initial stage 

is neglected. 
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Figure 4. The dependence of  the parameter  Nu/PP/2 on Reynolds number  for a vapor bubble at the 
moment  of  detachment from the nozzle. The experimental data were obtained by Chen (1985) for various 
indicated media. The solid line shows the stationary dependence [35]. The dotted line represents the 

average experimental correlation (Chen 1985). 

In figure 6 the generalized experimental data (Chen 1985) on the collapse times are plotted. The 
theoretical curves for collapse times predicted by [44] and [45] are plotted at Pr = 10 and 
Pe0 = 5.103, Pe0 = l 0  4 (the characteristic values for these numbers), because the Peclet and Prandtl 
numbers vary from experiment to experiment. The difference between the theoretical curves 
corresponding to the indicated values of  the Peclet number is small. Also there is little difference 
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Figure 5. The influence o f  the Strouhal number  on vapor bubble collapse in subcooled liquid. At the initial 
point a quasi-steady thermal boundary  layer already exists on the bubble surface. The dashed 
(6 = ¼St = 0.119) and solid (J = 0.562) curves are plotted using the asymptotic equation [44]. The dotted 
curve corresponds to the quasi-steady regime of  heat transfer [45]. Experimental data were obtained by 
Chen (1985) for ethanol at a pressure in the system of  4 bars (Ja = 9.57, Pr = 6.85, Pc0 = 6466, St = 0.476) 

and 1 bar (Ja = 47.5, Pr = 11.4, Pe0 = 7148, St = 2.247). 
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K L l c  ~ 0 . 7 ~  02  Figure 6. The dependence of the dimensionless time of the bubble collapse zc = ~ re0 r r  (here tc is 

the dimensional collapse time) on the Jacob number. The experiments with various liquids in various 
conditions were carried out by Chen (1985). The line indicated by crosses was obtained by Chen (1985) 
using the heat balance equation and his own averaged experimental data on the Nusselt number for rising 
and collapsing bubbles. The curves obtained within the framework of  the present theory are plotted for 
Pr = 10 and two values of  the Peclet number (Pe0 = 5000 and Pe0 = 10,000) that cover the range of  Peclet 
numbers realized in Chen's experiments. The thick solid curves are calculated using the asymptotic 
equation [44] which takes into account the contribution of the non-stationary effects. The dotted lines 

corresponding to [45] show the dependence of heat transfer for the quasi-stationary regime. 

between the curves with reasonable variations of the Prandtl number. Figure 6 shows that at 
Ja < 10 a theory, based on the assumption of the quasi-stationary character of the thermal 
boundary layer, describes the experiment well. Nevertheless, at sufficiently high Jacob numbers the 
effect of the increasing thickness of the boundary layer due to the quickly decreasing bubble radius 
can explain the experimental data qualitatively and quantitatively. 

7. CONCLUSIONS 

Analysis of the vapor bubble condensation curves based on the previous analytical and 
semi-empirical formulae of many authors (see Chen 1985; Mayinger et al. 1991) shows that there 
are no simple formulae a(t) which quantitatively describe the experiments over a wide range of 
Jacob numbers and high Peclet numbers. Visualization of the processes taking place near the 
condensing bubbles (Nordmann & Mayinger 1981) displays a very complex flow near the bubbles, 
including strong deformations, the formation of jets, turbulence, etc. Nevertheless, the theory 
developed in the present work, based on the assumptions of the sphericity of the bubble and 
potential flow, is consistent with the experiments on averaged bubble radius dynamics and allows 
us to obtain simple analytical expressions for the non-stationary Nusselt number. 

These expressions at various Jacob and Peclet numbers can be used not only for collapse 
prediction but also for description of the vapor bubble growth in superheated liquids. The effect 
of the non-stationarity of the boundary layer due to the changeability of the bubble velocity and 
radius can be strong and this effect can be taken into account in the complex models of multiphase 
flow. The obtained asymptotic of the Nusselt number at low Strouhal numbers, where the 
above-mentioned effect is represented by the differential term, is much more convenient than the 
general integral representation. Results obtained with the help of this asymptotic in a number of 
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cases agree substantially better with the experiments and direct numerical simulations, than the 
results of the quasi-steady theory of heat and mass transfer. 
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